1. (a) Find the derivative of the function

\[f(x) = \frac{1}{x} + 2\cos x + 3\tan x + 4\cot x + 5\ln x + 6e^x + 7x^8 + 9\arctan x + \arcsin x \]

(b) Let \(f(x) = x^2 \). Find \(f'(2) \) by using only the definition of the derivative.

(c) Geometrically, the definite integral \(\int_a^b f(x) \, dx \) represents the area of a certain region on the \(x - y \) plane that is related to the curve \(y = f(x) \).

Using only this geometrical interpretation find \(\int_0^3 (2x + 1) \, dx \).

2. Let \(\vec{a} = \langle 2, 1 \rangle \) and \(\vec{b} = \langle 1, 3 \rangle \)

(a) Find the angle between \(\vec{a} \) and \(\vec{b} \)

(b) Let \(P = \langle 1, 3 \rangle \), \(Q = \langle -1, 5 \rangle \) and \(S = \langle 5, 7 \rangle \) be points in a plane. Find the fourth vertex of the parallelogram whose sides are \(P\vec{Q} \) and \(P\vec{S} \).

3. The position vector of a particle traveling on the \(x - y \) plane at time \(t \) is \(\vec{r}(t) = \langle t, 8t - t^2 \rangle \), where \(t \) is measured in seconds and coordinates are in meters.

(a) Find the particle’s average velocity vector during the time interval \([0, 2]\).

(b) Find the particle’s velocity vector, speed, and acceleration vector at time \(t = 1 \).

(c) Find a non-parametric equation describing the curve that the particle passes by.

4. Find the derivatives of the following functions.

(a) \(f(x) = (x^2 + x + 1)(x^3 - 3x^2 + x + 1) \). [no simplification for answer]

(b) \(g(x) = \frac{x + 1}{x^2 + 1} \).

(c) \(p(x) = (1 + x^4)^{10} \)

(d) \(q(x) = \sin \left(\frac{1}{xe^{2x}} \right) \)

5. (a) Evaluate \(\lim_{h \to 0} \frac{(x + h)^2 - x^2}{h} \)
Evaluate \[\lim_{x \to 0} \frac{1 - e^x}{\sin x} \]

Evaluate \[\lim_{x \to 1} \frac{x - 1}{|x - 1|} \]

Evaluate \[\lim_{x \to 0} \left(\frac{1 + x}{x \cos x} - \frac{1}{x} \right) \]

6. (a) Find the Riemann sum \(R_4 = \sum_{i=1}^{4} 4 f(c_i)(x_i - x_{i-1}) \) for \(\int_0^8 x^2 \, dx \) with regular partition points \(x_i = 2i \) for \(i = 0, 1, 2, 3, 4 \), and the middle point rule: \(c_i = \frac{1}{2}(x_{i-1} + x_i) \).

(b) Evaluate the definite integral \(\int_0^8 x^2 \, dx \).

(c) Evaluate the indefinite integral

\[
\int \left(x^2 + \frac{2}{x} + 3 \cos x + \frac{4}{\sqrt{1 - x^2}} + \frac{5}{1 + x^2} \right) \, dx
\]

(d) Find the derivative of the function \(F(x) = \int_0^x t^2 e^{t^2} \, dt \).

7. (a) Use a linear approximation or a differential for the function \(f(x) = x^{1/3} \) at \(a = 1000 \) to find an approximation to \(\sqrt[3]{1003} - \sqrt[3]{1000} \).

(b) Let Use the Newton’s Method to find a rational number that approximates the positive root to \(x^2 - 2 = 0 \).

8. The derivatives of the function \(f(x) = xe^{-x^2/2} \) are calculated as follows

\[f'(x) = (1 - x^2)e^{-x^2/2}, \quad f''(x) = x(x^2 - 3)e^{-x^2/2} \]

(a) Find the intervals where \(f \) is increasing or decreasing. Also find points of local or global minimum or maximum.

(b) Find intervals where \(f \) is concave up or concave down. Also find points of inflection.
(c) Find any horizontal asymptotes.

(d) Sketch the curve of \(y = f(x) \) for \(-\infty < x < \infty\).

9. A box with a square base, rectangular sides, and open top must have a volume of 1000 cm\(^3\). The material for the base costs $4/cm\(^2\) and that for the sides $2/cm\(^2\). Find the dimensions of a box that minimizes the cost of material used.

10. A swimming pool of dimension 100(m) \(\times \) 200(m) and horizontal bottom is drained at a rate of 2 m\(^3\)/min. Find the rate of decreasing of the depth of the water in the pool.

11. (a) Let \(q(x) = x^2 \). Using the logarithmic differentiation technique, find \(q'(x) \).

(b) Let \(y = y(x) \) be implicitly defined by \(y^3 + xy = 1 \). Using the implicit differentiation technique, find \(y'(x) \).

(c) Find the equation of the line that has slope 3 and is tangent to the curve given parametrically by \(x = t^2 + 1, \ y = t^3 \).