1. Determine the given limit:

\[
\begin{array}{ccc}
\lim_{x \to 2} \frac{x^2 - 3x + 2}{x - 2} & \quad & \lim_{x \to 2} \frac{|x^2 - 3x + 2|}{x - 2} & \quad & \lim_{x \to 2} \frac{\sqrt{x^2 - 2} - 2}{x - 2} \\
\lim_{x \to 0} \frac{25x - 1}{x} & \quad & \lim_{x \to 0} \frac{e^x - 1}{x} & \quad & \lim_{h \to 0} \frac{e^{h+2}(2^h - 1)}{h} \\
\lim_{x \to 1} \frac{\ln x}{\cos (\pi x)} & \quad & \lim_{h \to 0} \frac{\frac{4}{1+h} - 4}{h} & \quad & \lim_{h \to 0} \frac{(3 + h)^2 - 9}{h}
\end{array}
\]

2. The velocity, \(v \), of a skydiver is given by

\[v(t) = \frac{mg}{k} \left(1 - e^{-kt/m} \right) \]

Where \(t \) is in seconds, \(m \) is mass of parachutist, and \(g \) is acceleration due to gravity.

(a) What is the skydiver’s terminal velocity? That is, in terms of the constants in the problem, what is \(\lim_{t \to \infty} v(t) \)?

(b) Suppose you are a skydiver weighing \(mg = 150 \) lb and that in the first 10 seconds you reach 80% of your terminal velocity.

Find \(m= \) ______________________ and find \(k= \) ______________________
3. Using the limit definition of $f'(a)$ which is $f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$, determine the derivative of $f(x)$ at $x = a$ for $f(x) = x^2 - 5x + 1$.

(a) Using your answer above, what is $f'(4)$?
(b) What is the equation of the tangent line at $x = 4$?
(c) Using your answer above, what is $f'(-5)$?
(d) What is the equation of the tangent line at $x = -5$?
(e) Using your answer above, at what value of x is the vertex?
(f) What is the equation of the tangent line at the vertex?

4. Given the sketch of the $f'(x)$ given the graph of $f(x)$ below:

![Graph of f(x) and f'(x)]

5. Given the function: $f(x) = \begin{cases}
4x - 1 & x \leq 3 \\
3x + 2 & x > 3
\end{cases}$

(a) Is the function f differentiable at $x = 3$?
(b) Why is it or is it not differentiable at $x = 3$?