ROTATION MATRICES

\[A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]

Note that

\[A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \quad A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \]

This shows the vectors \(e^{(1)} \) and \(e^{(2)} \) are rotated counterclockwise thru an angle of \(\theta \) radians. In particular,

\[Ae^{(2)} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} = \begin{bmatrix} \cos \left(\theta + \frac{\pi}{2} \right) \\ \sin \left(\theta + \frac{\pi}{2} \right) \end{bmatrix} \]

Thus in general, the transformation \(x \rightarrow Ax \) corresponds to a rotation of \(x \) counter-clockwise thru an angle of \(\theta \) radians.

\(A^{-1} \) should correspond to a clockwise rotation thru \(\theta \) radians; or replacing \(\theta \) by \(-\theta \) in the original formula for \(A \), we have

\[A^{-1} = \begin{bmatrix} \cos (-\theta) & -\sin (-\theta) \\ \sin (-\theta) & \cos (-\theta) \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \]
We generalize this in a very simple way to \mathbb{R}^n. Let $1 \leq k < l \leq n$, and define the matrix $R_{k,l}$ to the following matrix:

$$
\begin{bmatrix}
1 & 0 & \cdots & \cdots & 0 \\
0 & 1 & \cdots & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & \cos \theta & 0 \\
0 & 0 & \cdots & \sin \theta & \cos \theta \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & 1 \\
\end{bmatrix}
$$

In it, we have modified the identity matrix I, changing it in the four elements in positions (k,k), (k,l), (l,k), and (l,l).

The matrix $R_{k,l}$ will rotate the (k,l)-plane thru an angle of θ, while leaving unchanged the remainder of \mathbb{R}^n, that part perpendicular to (k,l)-plane.
HOUSEHOLDER MATRICES

Let $w \in \mathbb{C}^n$ be a vector of Euclidean length 1,

$$w^*w = 1 \quad \left(w^Tw = 1 \text{ for } w \in \mathbb{R}^n \right)$$

Define the matrix

$$H = I - 2ww^* \quad \left(I - 2ww^T \text{ for } w \in \mathbb{R}^n \right)$$

Then H is a Hermitian unitary matrix (orthogonal if $w \in \mathbb{R}^n$).

First,

$$H^* = (I - 2ww^*)^* = I - 2(ww^*)^* = I - 2(w^*)^*w^* = H$$

Also,

$$H^*H = H^2 = (I - 2ww^*)^2 = I - 4ww^* + 4(ww^*)(ww^*)$$
Note that
\[
(ww^*)(ww^*) = w\left(w^*w\right)w^* = ww^*
\]

Thus
\[
H^*H = I - 4ww^* + 4\left(ww^*\right)(ww^*) = I
\]
showing \(H\) is unitary.

What does \(H\) do in a geometric sense? First, note that
\[
Hw = (I - 2ww^*)w = w - 2ww^*w = w - 2w = -w
\]
Also, let \(v\) be any vector orthogonal to \(w\). Then
\[
(ww^*)v = w(w^*v) = w(0) = 0
\]
\[
Hv = (I - 2ww^*)v = v - 2(ww^*)v = v
\]
Thus \(H\) is a reflection of space thru the \((n-1)\)-dimensional hyperplane perpendicular to \(w\).

The rotation matrices \(R_{k,l}\) and the Householder matrices \(H\) are the most commonly used orthogonal (or unitary) matrices used in numerical analysis.
EXAMPLES

For the $n = 3$ case, with $w \in \mathbb{R}^3$,

$$H = \begin{bmatrix} 1 - 2w_1^2 & -2w_1w_2 & -2w_1w_3 \\ -2w_1w_2 & 1 - 2w_2^2 & -2w_2w_3 \\ -2w_1w_3 & -2w_2w_3 & 1 - 2w_3^2 \end{bmatrix}$$

Then $H^T = H$ and $H^2 = I$.

For $w = \left[\frac{1}{3}, \frac{2}{3}, \frac{2}{3} \right]^T$,

$$H = \begin{bmatrix} 7 & -4 & -4 \\ 4 & 1 & 8 \\ 4 & 8 & 1 \end{bmatrix}$$

For $w = \left[0, \frac{3}{5}, \frac{4}{5} \right]^T$,

$$H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{7}{25} & -\frac{24}{25} \\ 0 & \frac{24}{25} & \frac{7}{25} \end{bmatrix}$$
REDUCTION OF A VECTOR

Given a vector \(d \in \mathbb{R}^m \), we want to find \(v \in \mathbb{R}^m \) with \(\|v\|_2 = 1 \) and

\[
(I - 2vv^T) d = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix} \tag{1}
\]

Since \(I - 2vv^T \) is orthogonal, the length of \(d \) is preserved in the transformation of \(d \):

\[
|\alpha| = \|d\|_2 \equiv S
\]

and

\[
\alpha = \pm S = \pm \sqrt{d_1^2 + \cdots + d_m^2}
\]

with the sign to be determined later.
Introduce

\[p = v^T d \]

From (1),

\[d - 2pv = [\alpha, 0, \ldots, 0]^T \]

(2)

Multiply on the left by \(v^T \) to get

\[p - 2pv^Tv = v_1 \alpha \]

\[p = -\alpha v_1 \]

Substitute this back into (2). Then look at the individual components, obtaining

\[d_1 + 2\alpha v_1^2 = \alpha \]

\[d_i - 2pv_i = 0, \quad i = 2, \ldots, m \]

(3)

From the first equation,

\[v_1^2 = \frac{\alpha - d_1}{2\alpha} = \frac{1}{2} \left(1 - \frac{d_1}{\alpha} \right) \]

(4)

Recall that we have not yet chosen the sign of \(\alpha \). Now choose the sign of \(\alpha \) according to

\[\text{sign} (\alpha) = - \text{sign} (d_1) \]
The subtraction in (4) is now actually an addition, so as to avoid a ‘loss of significance’ error. We can take the square root in (4) to find v_1, and there is no obvious choice of the sign here, although most people would choose $v_1 > 0$.

Return to $p = -\alpha v_1$ to obtain p. Then return to (3) to find $v_2, ..., v_m$:

$$v_i = -\frac{d_i}{2p}, \quad i = 2, ..., m$$

This completes the construction of v and therefore the Householder matrix $I - 2vv^T$ based upon it. Again, we now have

$$\left(I - 2vv^T \right) d = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
EXAMPLE

Let

\[d = [2, 2, 1]^T \]

Then

\[\alpha = -\|d\|_2 = -3, \quad v_1 = \sqrt{\frac{5}{6}}, \quad p = \sqrt{\frac{15}{2}} \]

\[v_2 = \frac{2}{\sqrt{30}}, \quad v_3 = \frac{1}{\sqrt{30}} \]

Then

\[H = \begin{bmatrix}
-\frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \\
-\frac{2}{3} & \frac{11}{15} & -\frac{2}{15} \\
-\frac{1}{3} & -\frac{2}{15} & \frac{14}{15}
\end{bmatrix} \]

In practice, one does not need \(H \) explicitly.
NR FACTORIZATION

Let A be a matrix that is $n \times n$. We want to factor it into the form

$$A = QR$$

with Q orthogonal and R upper triangular. We do this by working on each of the columns in succession.

For the first step, let

$$P_1 = I - 2w^{(1)}w^{(1)T}, \quad \|w^{(1)}\|_2 = 1$$

Let $A = \begin{bmatrix} A_{*,1}, \ldots, A_{*,n} \end{bmatrix}$. Then

$$P_1A = \begin{bmatrix} P_1A_{*,1}, \ldots, P_1A_{*,n} \end{bmatrix}$$

We choose P_1 so that

$$P_1A_{*,1} = [\alpha, 0, \ldots, 0]^T$$

We can of course do this by the construction already described above, with $d = A_{*,1}$.
With this choice of P_1, the matrix $P_1 A$ will have zeroes in the first column below the diagonal position. Next, we wish to do the same to the second column, but without changing the first column.

Define

$$P_2 = I - 2w^{(2)}w^{(2)T}, \quad \|w^{(2)}\|_2 = 1$$

But now require

$$w^{(2)} = \begin{bmatrix} 0 \\ v \end{bmatrix}, \quad v^T v = 1, \quad v \in \mathbb{R}^{n-1}$$

Then

$$P_2 = \begin{bmatrix} 1 & 0 \\ 0 & I - 2vv^T \end{bmatrix}$$

Calculate $P_2 P_1 A$:

$$P_2 P_1 A = \begin{bmatrix} P_2 P_1 A^*, 1, \ldots, P_2 P_1 A^*, n \end{bmatrix}$$
We know that

\[P_1 A_{*,1} = [\alpha, 0, \ldots, 0]^T \]

and therefore

\[P_2 P_1 A_{*,1} = \begin{bmatrix} 1 & 0 \\ 0 & I - 2\nu\nu^T \end{bmatrix} \begin{bmatrix} \alpha \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix} \]

Thus the first column of \(P_2 P_1 A \) retains its zero structure below the diagonal. Now choose \(\nu \) so as to force the second column of \(P_2 P_1 A \) to have zeroes below the diagonal position. Writing

\[P_1 A_{*,2} = \begin{bmatrix} c \\ d \end{bmatrix}, \quad d \in \mathbb{R}^{n-1} \]

we choose \(\nu \) by forcing

\[(I - 2\nu\nu^T) d = [\alpha_2, 0, \ldots, 0]^T \]

for a suitable value of \(\alpha_2 \).
Continue in this manner, defining

$$P_i = I - 2w^{(i)}w^{(i)T}, \quad \|w^{(i)}\|_2^2 = 1$$

with

$$w^{(i)} = \begin{bmatrix} 0 \\ v \end{bmatrix}, \quad v^Tv = 1, \quad v \in \mathbb{R}^{n-i+1}$$

and choosing v to force $P_i \cdots P_1A$ to have zeros below the diagonal in column i. After $n-1$ steps, the matrix

$$P_{n-1} \cdots P_2P_1A \equiv R$$

is upper triangular. Note that the matrix $P_{n-1} \cdots P_2P_1$ is orthogonal,

$$(P_{n-1} \cdots P_2P_1)^T (P_{n-1} \cdots P_2P_1)$$

$$= P_1^T \cdots P_{n-1}^TP_{n-1} \cdots P_2P_1$$

$$= I$$

We define

$$Q^T = P_{n-1} \cdots P_2P_1$$

Then

$$Q^TA = R$$

$$A = QR$$
EXAMPLE

An example for the matrix

\[
A = \begin{bmatrix}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4 \\
\end{bmatrix}
\]

is given on page 613 in the text. The result is \(A = QR \) with

\[
R = \begin{bmatrix}
-4.24264 & -2.12132 & -2.12132 \\
0 & -3.67423 & -1.22475 \\
0 & 0 & 3.46410 \\
\end{bmatrix}
\]

\[
Q = P_1 P_2 = \begin{bmatrix}
-0.94281 & 0.27217 & -0.19245 \\
-0.23570 & -0.95258 & -0.19245 \\
-0.23570 & -0.13608 & 0.96225 \\
\end{bmatrix}
\]

This factorization can also be accomplished using the Matlab instruction \(qr \):

\[
[Q \quad R] = qr(A)
\]
HOUSEHOLDER MULTIPLICATIONS

Consider multiplying a Householder matrix H times another matrix:

$$HA = \left(I - 2ww^T \right) A = A - \left(2ww^T \right) A$$

$$= A - 2w \left(w^T A \right)$$

The quantity $w^T A$ is a vector, and it can be produced with approximately $2n^2$ operations if w has all nonzero components. Then calculating $2w \left(w^T A \right)$ will cost a further n^2 multiplications, approximately, and $A - 2w \left(w^T A \right)$ will cost n^2 subtractions. Thus the total operations cost to produce HA will be around $4n^2$ operations, rather than the $2n^3$ one would usually expect with multiplying two $n \times n$ matrices.

This also shows why we generally do not produce $Q = P_1 \cdots P_{n-1}$ explicitly, as it is cheaper to carry out matrix multiplications when Q is in factored form.
REDUCTION OF SYMMETRIC MATRICES

Let A be a symmetric matrix. We want to use a similarity transformation to reduce it to symmetric tridiagonal form.

Assume A is $n \times n$. We will perform a sequence of similarity transformations, using Householder matrices, to reduce A to tridiagonal form. We begin by using a similarity transformation to put zeros into the first column of the matrix, in the positions below the (2,1) position.

\[P_1^T A P_1 = A_2 = \begin{bmatrix}
 a_{1,1} & \hat{a}_{2,1} & 0 & \cdots & 0 \\
 \hat{a}_{2,1} & \hat{a}_{2,2} & \cdots & \hat{a}_{n,2} \\
 0 & & \ddots & \ddots & \ddots \\
 0 & \hat{a}_{n,2} & & \cdots & \hat{a}_{n,n}
\end{bmatrix} \]

We use the Householder matrix

\[P_1 = I - 2w^{(2)}w^{(2)T}, \quad \|w^{(2)}\|_2 = 1 \]

with

\[w^{(2)} = [0, v_1, \ldots, v_m]^T, \quad m = n - 1 \]
Then

\[
P_1 = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 - 2v_1^2 & \cdots & -2v_1v_m \\
\vdots & \vdots & \ddots & \vdots \\
0 & -2v_1v_m & \cdots & 1 - 2v_m^2
\end{bmatrix}
\]

Let \(A = [A_{*,1}, \ldots, A_{*,n}] \). Then

\[
P_1A = [P_1A_{*,1}, \ldots, P_1A_{*,n}]
\]

The first column looks like

\[
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 - 2v_1^2 & \cdots & -2v_1v_m \\
\vdots & \vdots & \ddots & \vdots \\
0 & -2v_1v_m & \cdots & 1 - 2v_m^2
\end{bmatrix}
\begin{bmatrix}
a_{1,1} \\
a_{2,1} \\
\vdots \\
a_{n,1}
\end{bmatrix} =
\begin{bmatrix}
a_{1,1} \\
\hat{a}_{2,1} \\
0 \\
\vdots
\end{bmatrix}
\]

With reference to our earlier work on reducing a vector \(d \) to a simpler form with only a single nonzero component, we use that algorithm with

\[
d = [a_{2,1}, \ldots, a_{n,1}]^T
\]

With that algorithm, we can find \(v \in \mathbb{R}^m \) with

\[
(I - 2vv^T) d = [\hat{a}_{2,1}, 0, \ldots, 0]^T
\]
In fact,

$$\hat{a}_{2,1} = -\text{sign} \left(a_{2,1}\right) \sqrt{a_{2,1}^2 + \cdots + a_{n,1}^2}$$

Now look at P_1A and P_1AP_1:

$$P_1A = \begin{bmatrix}
a_{1,1} & * & \cdots & * \\
\hat{a}_{2,1} & * & \cdots & * \\
0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & * & \cdots & * \\
\end{bmatrix} \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 - 2v_1^2 & \cdots & -2v_1v_m \\
\vdots & \vdots & \ddots & \vdots \\
0 & -2v_1v_m & \cdots & 1 - 2v_m^2 \\
\end{bmatrix}$$

P_1AP_1 is given by

$$= \begin{bmatrix}
a_{1,1} & * & \cdots & * \\
\hat{a}_{2,1} & * & \cdots & * \\
0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & * & \cdots & * \\
\end{bmatrix}$$
In addition, the matrix P_1AP_1 is symmetric:

$$(P_1AP_1)^T = P_1^T A^T P_1^T = P_1AP_1$$

Therefore, P_1AP_1 must look like

$$A_2 = P_1AP_1 = \begin{bmatrix}
 a_{1,1} & \hat{a}_{2,1} & 0 & \cdots & 0 \\
 \hat{a}_{2,1} & * & \cdots & * \\
 0 & * & \cdots & * \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & * & \cdots & *
\end{bmatrix}$$

We continue this process by now reducing the second column by a similar operation. We use the Householder matrix

$$P_2 = I - 2w^{(3)}w^{(3)T}, \quad \|w^{(3)}\|_2 = 1$$

$$w^{(3)} = [0, 0, v_1, \ldots, v_m]^T, \quad m = n - 2$$

Then

$$P_2 = \begin{bmatrix}
 1 & 0 & 0 & \cdots & 0 \\
 0 & 1 & 0 & \cdots & 0 \\
 0 & 0 & 1 - 2v_1^2 & \cdots & -2v_1v_m \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & -2v_1v_m & \cdots & 1 - 2v_m^2
\end{bmatrix}$$
We choose $v \in \mathbb{R}^{n-2}$ such that
\[
(I - 2vv^T) d = [\hat{a}_{3,2}, 0, \ldots, 0]^T
\]
with d the elements in positions 3 thru n of column 2 of the matrix A_2. Note that the form of P_2 is such that $P_2 A_2 P_2$ will have the same first column and row as in A_2. For example, consider calculating first $P_2 A_2$:
\[
\begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & 0 & \vdots \\
0 & 0 & 1 - 2v_1^2 & \cdots & -2v_1v_m \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & -2v_1v_m & \cdots & 1 - 2v_m^2 \\
\end{bmatrix}
\begin{bmatrix}
a_{1,1} & \hat{a}_{2,1} & 0 & \cdots & 0 \\
\hat{a}_{2,1} & * & \cdots & * & \vdots \\
0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & * & \cdots & * \\
\end{bmatrix}
\]
We continue in this way, obtaining finally
\[
P_{n-2} \cdots P_1 A P_1 \cdots P_{n-2} = T
\]
with T a symmetric tridiagonal matrix. Define
\[
Q = P_1 \cdots P_{n-2}
\]
It is orthogonal, and
\[
Q^T A Q = T
\]
Therefore the eigenvalues of A and T are the same. For the eigenvectors, let

$$Tx = \lambda x, \quad x \neq 0$$

Then

$$Q^T A Q x = \lambda x$$
$$A(Qx) = \lambda(Qx)$$

Thus Qx is the eigenvector of A corresponding to the eigenvector x for T.

EXAMPLE: (From page 617)

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}, \quad w^{(2)} = \begin{bmatrix} 0, \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$$

$$P_1 = I - 2w^{(2)}w^{(2)T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{3}{5} & -\frac{4}{5} \\ 0 & -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

$$T = A_2 = \begin{bmatrix} 1 & -5 & 0 \\ -5 & \frac{73}{25} & -\frac{14}{25} \\ 0 & -\frac{14}{25} & -\frac{23}{25} \end{bmatrix}$$
When the rounding errors inherent in producing T from A are taken into account, how do the eigenvalues of T and A compare. This is given in the text as Theorem 9.4 (page 617). It is assume that the arithmetic being used is t-digit binary arithmetic with rounding; and moreover, it is assumed that all inner products

$$\sum_{j=1}^{m} a_j b_j$$

are accumulated in a higher precision and then rounded back to t digits at the completion of the summation process. With this, we obtain for the eigenvalues $\{\lambda_j\}$ and $\{\tau_j\}$ of A and T respectively, that

$$\left[\sum_{j=1}^{n} \left(\tau_j - \lambda_j \right)^2 \right]^{\frac{1}{2}} \sum_{j=1}^{n} \lambda_j^2 \leq c_n 2^{-t}$$

$$c_n = 25 (n - 1) \left[1 + (12.36) 2^{-t} \right]^{2n-4} \div 25 (n - 1)$$