SOLUTION BY MINIMIZATION

This is a part of a much larger subject, one taken up in much more extended fashion in *optimization theory*. To solve $Ax = b$, we reformulate it as a minimization problem.

Assume A is a real symmetric positive definite matrix of order n. Define

$$f(x) = \frac{1}{2} x^T Ax - b^T x, \quad x \in \mathbb{R}^n$$

The solution of

$$\min_{x \in \mathbb{R}^n} f(x)$$

is $x = x^* \equiv A^{-1}b$. To see this, we introduce the useful quantity

$$E(x) = \frac{1}{2} (x^* - x)^T A (x^* - x), \quad x \in \mathbb{R}^n$$

Sometimes this is referred to as the “energy” associated with $x^* - x$, due to certain physical quantities associated with A.
Claim:

\[f(x) = E(x) - \frac{1}{2} b^T x^*, \quad x \in \mathbb{R}^n \]

Expanding,

\[E(x) - \frac{1}{2} b^T x^* = \frac{1}{2} (x^* - x)^T A (x^* - x) - \frac{1}{2} b^T x^* \]

\[= \frac{1}{2} (x^*)^T A x^* - \frac{1}{2} x^T A x^* - \frac{1}{2} (x^*)^T A x \]

\[+ \frac{1}{2} x^T A x - \frac{1}{2} b^T x^* \]

Simplifying,

\[-\frac{1}{2} x^T A x^* - \frac{1}{2} (x^*)^T A x = -x^T A x^* = -x^T b = -b^T x \]

\[\frac{1}{2} (x^*)^T A x^* - \frac{1}{2} b^T x^* = \frac{1}{2} \left[(x^*)^T A x^* - (x^*)^T b \right] = 0 \]

Then

\[E(x) - \frac{1}{2} b^T x^* = -b^T x + \frac{1}{2} x^T A x = f(x) \]
Since A is symmetric and positive definite, let its eigenvalues be denoted by

$$0 < \lambda_1 \leq \cdots \leq \lambda_n$$

From Exercise 15 of Chapter 7, we obtain directly that

$$\lambda_1 \|z\|^2_2 \leq z^T A z \leq \lambda_n \|z\|^2_2, \quad z \in \mathbb{R}^n$$

Thus for the function $E(x)$,

$$\lambda_1 \|x^* - x\|^2_2 \leq E(x) \leq \lambda_n \|x^* - x\|^2_2, \quad x \in \mathbb{R}^n$$

Thus

$$E(x) = 0 \iff x = x^*$$

Since

$$f(x) = E(x) - \frac{1}{2} b^T x^*, \quad x \in \mathbb{R}^n$$

we have that $f(x)$ is a minimum if and only if $x = x^*$; and in that case,

$$f(x^*) = -\frac{1}{2} b^T x^*$$
HOW TO MINIMIZE \(f(x) \)?

We can choose a basis \(\{p_1, \ldots, p_n\} \) and then look in succession at minimizing \(f(x) \) along each direction \(p = p_j \):

\[
\min_{-\infty < \alpha < \infty} f \left(x^{(0)} + \alpha p \right) = f \left(x^{(0)} + \alpha^* p \right)
\]

\[
x^{(0)} \leftarrow x^{(0)} + \alpha^* p
\]

For example, one could choose the basis \(\{p_1, \ldots, p_n\} \) to be the standard basis \(\{e^{(1)}, \ldots, e^{(n)}\} \). In fact, there are much better choices.

In optimization theory, we often choose a basis \(\{p_1, \ldots, p_n\} \) of conjugate directions. These are a basis for which

\[
p_j^T Ap_i = 0, \quad i, j = 1, \ldots, n, \quad i \neq j
\]

We say these are ‘A-conjugate’ or ‘A-orthogonal’. Introduce a new inner product and norm

\[
(x, y)_A = y^T A x, \quad \|x\|_A = \sqrt{(x, x)_A}
\]
Then from Exercise 15 of Chapter 7, as before,
\[\sqrt{\lambda_1} \|x\|_2 \leq \|x\|_A \leq \sqrt{\lambda_n} \|x\|_2, \quad x \in \mathbb{R}^n \]
With this norm \(\|x\|_A \), called the **energy norm**, we have that a basis of conjugate directions is in fact an orthogonal basis with respect to the inner product \((x, y)_A\). Also,
\[E(x) = \frac{1}{2} \|x^* - x\|^2_A \]
Using the orthogonality, it is straightforward to obtain
\[x^* = \alpha_1 p_1 + \cdots + \alpha_n p_n \]
\[\alpha_k = \frac{p_k^T b}{p_k^T A p_k}, \quad k = 1, ..., n \]
The main question is how to choose the conjugate directions \(\{p_k\} \).
Recall
\[f(x) = \frac{1}{2} x^T A x - b^T x, \quad x \in \mathbb{R}^n \]

Introduce the partial solutions \(x_0 = 0 \),
\[x_k = \alpha_1 p_1 + \cdots + \alpha_k p_k, \quad k = 1, \ldots, n \]
\[\alpha_j = \frac{p_j^T b}{p_j^T A p_j}, \quad j = 1, \ldots, k \]
\[r_k = b - A x_k = -\nabla f(x_k) \]

Then \(r_0 = b \), and
\[x_k = x_{k-1} + \alpha_k p_k, \quad r_k = r_{k-1} - \alpha_k A p_k \]

For \(k = n \), we will have \(x_n = x^* \), the true solution.
Often, we may have \(x_k = x^* \) with \(k < n \); or \(x_k \)
may nearly equal \(x^* \), accurately enough for practical purposes.
There are a number of properties with the use of the conjugate directions in minimizing $f(x)$, and these are given in Lemmas 1 and 2 on page 565. For example,

$$r^T_k p_i = 0, \quad i = 1, \ldots, k$$

and

$$\min_{-\infty < \alpha < \infty} f(x_{k-1} + \alpha p_k)$$

is solved uniquely with

$$\alpha = \alpha_k \equiv \frac{p^T_k b}{p^T_k A p_k}$$

Let S_k be the span of $\{p_1, \ldots, p_k\}$. Then

$$\min_{x \in S_k} f(x)$$

is solved uniquely by $x = x_k$.
THE CONJUGATE GRADIENT METHOD

Given an initial guess, the direction of steepest descent on the graph of \(z = f(x) \) is given by

\[-\nabla f(x_0) = r_0\]

and we choose this as our first conjugate direction \(p_1 \). In our case, we choose \(x_0 = 0 \) for simplicity, and then

\[p_1 = b \]

We construct the iterates \(x_k \) and the conjugate directions \(p_k \) simultaneously. Assume the iterates \(x_1, \ldots, x_k \) and the conjugate directions \(p_1, \ldots, p_k \) have been generated. A new direction \(p_{k+1} \) must be generated, and it must be \(A \)-conjugate to \(p_1, \ldots, p_k \).
Assume \(x_k \neq x^* \), as otherwise we would be done. Therefore, \(r_k \neq 0 \). We set
\[
p_{k+1} = r_k + \beta_{k+1}p_k
\]
Then the condition
\[
p_k^T A p_{k+1} = 0
\]
implies
\[
\beta_{k+1} = -\frac{p_k^T A r_k}{p_k^T A p_k}
\]
Together with
\[
x_{k+1} = x_k + \alpha_{k+1}p_{k+1}, \quad \alpha_{k+1} = \frac{p_{k+1}^T b}{p_{k+1}^T A p_{k+1}}
\]
this defines the conjugate gradient iteration method.
The method is guaranteed to converge after at most n iterations, although it often gets there much sooner; or an acceptably small error is obtained with some x_k for some k much less than n. There are many optimality properties to this iteration, and we give only one here. Let

$$
c = \frac{\lambda_1}{\lambda_n} = \frac{1}{\|A\|_2 \|A^{-1}\|_2} = \frac{1}{\text{cond}(A)_2}
$$

with λ_1 and λ_n the smallest and largest eigenvalues of A. Then

$$
\|x^* - x_k\|_A \leq 2 \left[1 - \sqrt{c} \right]^k \left[1 + \sqrt{c} \right] \|x^*\|_A
$$

The closer to 1 is $\text{cond}(A)_2$, the faster is the convergence.
NUMERICAL EXAMPLE

Consider solving a discretization of the integral equation

$$3x(s) - \int_0^1 \cos(\pi st)x(t) \, dt = 1, \quad 0 \leq s \leq 1$$

Convert this to an approximating linear system by applying the midpoint numerical integration rule with $n = 100$ subdivisions of $[0, 1]$. Let $h = 1/n$, and let t_i be the midpoint of the i^{th} subinterval of width h. Then the linear system is

$$3z_i - h \sum_{j=1}^{n} \cos(\pi t_i t_j)z_j = 1, \quad i = 1, \ldots, n$$

<table>
<thead>
<tr>
<th>k</th>
<th>$|x^* - x_k|_A$</th>
<th>$|x^* - x_k|_{\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.48E−1</td>
<td>7.11E−2</td>
</tr>
<tr>
<td>2</td>
<td>4.60E−3</td>
<td>7.60E−4</td>
</tr>
<tr>
<td>3</td>
<td>7.75E−7</td>
<td>1.46E−7</td>
</tr>
<tr>
<td>4</td>
<td>1.41E−12</td>
<td>2.83E−13</td>
</tr>
<tr>
<td>5</td>
<td>4.04E−15</td>
<td>6.11E−16</td>
</tr>
</tbody>
</table>
PRECONDITIONERS

Find a nonsingular matrix Q and rewrite $Ax = b$ as

$$
(Q^{-1}AQ^{-T})(Q^Tx) = Q^{-1}b
$$

with $Q^{-T} = (Q^{-1})^T$. Introduce

$$
\tilde{A} = Q^{-1}AQ^{-T}, \quad \tilde{x} = Q^Tx, \quad \tilde{b} = Q^{-1}b
$$

Then solve $\tilde{A}\tilde{x} = \tilde{b}$ by conjugate gradient iteration.

We try to choose Q such that

$$
\text{cond}(\tilde{A})_2 \ll \text{cond}(A)_2
$$

and thus have the conjugate gradient iteration converge more rapidly. In applying this technique, the matrix \tilde{A} is never produced explicitly.

There is an “industry” that develops such preconditioners.
KRYLOV SUBSPACE METHODS

Look at the formulas for p_{k+1} and x_{k+1}:

$$p_{k+1} = r_k + \beta_{k+1}p_k$$

$$x_{k+1} = x_k + \alpha_{k+1}p_{k+1}$$

with $p_1 = b$, $x_0 = 0$, $r_0 = b$. Then

$$x_1 = \alpha_1 p_1, \quad r_1 = b - Ax_1$$

$$p_2 = b - Ax_1 + \beta_2 b = c_1 b + c_2 Ab$$

for some c_1, c_2. In general, we can show

$$p_k = \sum_{j=0}^{k-1} c_j A^j b, \quad x_k = \sum_{j=0}^{k-1} d_j A^j b$$

for some constants $\{c_j\}$ and $\{d_j\}$.
Consider the subspace

\[S_k = \text{span} \left\{ b, Ab, A^2b, \ldots, A^{k-1}b \right\} \]

This is called the Krylov subspace of order \(k \); and we are seeking our solution \(x_k \) from this subspace. There are methods other than the conjugate gradient method which seek solutions from \(S_k \). When \(A \) is no longer symmetric, one such method is called GMRES, and it is quite popular for such purposes. For a reference for such methods, see

OPTIMALITY OF CG METHOD

Theorem. The iterates \(\{x_k\} \) of the CG method satisfy

\[
\|x^* - x_k\|_A = \min_{\deg(q) < k} \|x^* - q(A)b\|_A
\]

From this many convergence results can be obtained, including one given earlier using the condition number of \(A \).

Let \(\lambda_1, \ldots, \lambda_n \) be the eigenvalues of \(A \), with orthonormal eigenvectors \(\varepsilon_1, \ldots, \varepsilon_n \). Then

\[
q(A)e_j = q(\lambda_j)e_j
\]

Write

\[
x^* = \sum_{j=1}^{n} \xi_j e_j
\]

Then

\[
q(A) = \sum_{j=1}^{n} \xi_j q(\lambda_j)e_j
\]
This leads to
\[\| x^* - x_k \|_A = \min_{\deg(q) < k} \sum_{j=1}^{n} \xi_j^2 \lambda_j \left[1 + \lambda_j q(\lambda_j) \right]^2 \]

As an example of the use of this, suppose that \(A \) has only 4 distinct eigenvalues, say \(\lambda_1, ..., \lambda_4 \). Then let \(q \) be a degree 3 polynomial for which
\[1 + \lambda_j q(\lambda_j) = 0, \quad j = 1, 2, 3, 4 \]
The above expression will then be zero and \(x_4 = x^* \). What happens when the eigenvalues cluster around a few points?
CONJUGATE GRADIENT THEOREM

Assume $x_k \neq x^*$, and therefore $r_k = b - Ax_k \neq 0$. Then:

(a) $\text{span} \{r_0, r_1, ..., r_k\} = \text{span} \{b, Ab, A^2b, ..., A^kb\}$

(b) $\text{span} \{p_1, ..., p_{k+1}\} = \text{span} \{b, Ab, A^2b, ..., A^kb\}$

(c) $p_{k+1}^Tp_i = 0, \ i = 1, ..., k$

(d) $\alpha_{k+1} = \frac{r_k^Tr_k}{p_{k+1}^TAp_{k+1}}$

(e) $\beta_{k+1} = \frac{r_k^Tr_k}{r_{k-1}^Tr_{k-1}}$
A NONLINEAR GENERALIZATION

Consider solving

$$\min_{x \in \mathbb{R}^n} f(x)$$

for a general scalar nonlinear function $f(x)$ defined on \mathbb{R}^n. Following is the Fletcher-Reeves generalization of the conjugate gradient iteration.

A. Given x_0, define $r_0 = p_1 = -\nabla f(x_0)$.
B. For $k = 1, \ldots n$:

Set $x_k = x_{k-1} + \alpha_k p_k$ with α_k the minimizer of

$$f(x_{k-1} + \alpha p_k)$$

Set $r_k = -\nabla f(x_k)$

For $k < n$, set $p_{k+1} = r_k + \beta_{k+1} p_k$ with

$$\beta_{k+1} = \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}}$$

C. Set $x_0 := x_n$ and return to Step A.