System of First Order Differential Equations with Constant Coefficients

1. (Eigenproblem) Find an eigenpair for the matrix \(A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \).

2. (Fundamental Solution Matrix) The matrix \(A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \) has an eigenpair \(\{i, \begin{bmatrix} 1 \\ i \end{bmatrix} \} \).

Find the fundamental solution matrix \(\Psi(t) \) to the differential system \(x' = Ax \) with the property that \(\Psi(0) \) is the identity matrix.

3. (Undetermined Coefficients) Find a particular solution to \(x' = \begin{bmatrix} 2 & 1 \\ 3 & 0 \end{bmatrix} x + e^{-t} \cos(2t) \begin{bmatrix} 6 \\ 2 \end{bmatrix} \).

4. (Variation of Parameters) Let \(A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \) and \(\Psi(t) = e^t \begin{bmatrix} 1 - t & t \\ -t & 1 + t \end{bmatrix} \). (a) Show that \(\Psi(t) \) is a fundamental solution matrix to \(\dot{y}' = Ay \). (b) Find the solution to the initial value problem \(x' = Ax + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \), \(x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \).

5. (Initial Value Problem) Solve \(x' = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x \), \(x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \).

Second Order Linear Differential Equation with Constant Coefficients

1. (Homogeneous equations) Find the general solution to
 (a) \(u'' - 3u' + 2u = 0 \), (b) \(u'' + u' + 2u = 0 \), (c) \(u'' - 2u' + u = 0 \)

2. (Undetermined Coefficients) Find a particular solution to
 (a) \(u'' + 2u = 1 + 2t + t^2 \) (b) \(u'' - 2u' + u = e^t \) (c) \(u'' + u = 4\sin t \)

3. (Variation of Parameters) Find general solution to \(u'' + u = \sec t \)

4. (Initial Value Problem) Solve \(u'' + u = 2 \), \(u(0) = 0 \), \(u'(0) = 1 \).

Some Theoretical Proofs

1. Suppose that \(A \) is a real matrix and \(y(t) \) is a complex vector valued function solving \(y' = Ay \). Show that both the real and imaginary parts of \(y \) solve \(x' = Ax \).

2. Assume that \(A \) is a constant matrix and \(\Phi(t) \) is a solution matrix to \(x' = Ax \). Let \(\Psi(t) = \Phi'(t) \). Show that \(\Psi(t) \) is also a solution matrix to \(x' = Ax \).

3. Let \(L \) be a linear differential operator. Assume that \(L(u_1) = 0 \), \(L(u_2) = 0 \) and \(L(u_p) = f \). Show that for any constants \(c_1 \) and \(c_2 \), the function \(u = c_1 u_1 + c_2 u_2 + u_p \) solves \(L(u) = f \).

4. Let \(L(u) = u'' + pu' + qu \) where \(p \) and \(q \) are real functions. Assume that \(w = (t - it^2)e^{it} \) solves \(L(w) = te^{it} \). Find a particular solution to \(L(u) = t \cos t + 2t \sin t \).