MATH 0220 MIDTERM II REVIEW

1. **(Vector Algebra)** Let \(\mathbf{a} = (3, 4), \mathbf{b} = (-5, 12) \). Find \(|\mathbf{a}|, 2\mathbf{a} - 5\mathbf{b}, \mathbf{a} \cdot \mathbf{b} \) and the angle between \(\mathbf{a} \) and \(\mathbf{b} \). Also find the unit vector in the direction of \(\mathbf{a} \) and the projection of \(\mathbf{b} \) in the direction of \(\mathbf{a} \).

 Solution. \(|\mathbf{a}| = \sqrt{3^2 + 4^2} = 5 \), \(2\mathbf{a} - 5\mathbf{b} = (2 \cdot 3 - 5 \cdot (-5), 2 \cdot 4 - 5 \cdot 12) = (31, -52) \), \(\mathbf{a} \cdot \mathbf{b} = 3 \cdot (-5) + 4 \cdot 12 = 33 \). The angle between \(\mathbf{a} \) and \(\mathbf{b} \) is \(\arccos \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \arccos \frac{33}{25} \). The unit vector in the direction of \(\mathbf{a} \) is \(\mathbf{e} = \frac{\mathbf{a}}{|\mathbf{a}|} = \left(\frac{3}{5}, \frac{4}{5} \right) \). The projection of \(\mathbf{a} \) in the direction of \(\mathbf{b} \) is \(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b} = \frac{33}{25} \left(\frac{99}{25}, \frac{132}{25} \right) \).

2. **(Particle Motion)** A particle moving on a plane has position vector \(\mathbf{r}(t) = (1 + 2\cos t, 3\sin t) \) at time \(t \). (a) Find the average velocity during time interval \([0, \pi] \). (b) Find the velocity vector, the speed, and the acceleration vector at time \(t = \pi/2 \). (c) Find a non-parametric equation describing the trajectory of the particle. (d) Find a parametric equation for the tangent line to the trajectory at \(t = \pi/2 \). (e) Find the slope of the tangent line in (d).

 Solution. (a) The average velocity is \(\frac{\text{displacement}}{\text{time used}} = \frac{\mathbf{r}(\pi) - \mathbf{r}(0)}{\pi - 0} = (-4/\pi, 0) \).

 (b) We compute \(\mathbf{r}'(t) = (-2\sin t, 3\cos t) \) and \(\mathbf{r}''(t) = (-2\cos t, -3\sin t) \). Hence, at \(t = \pi/2 \), the velocity vector is \(\mathbf{r}'(\pi/2) = (-2, 0) \), the speed is \(|\mathbf{r}'(\pi/2)| = \sqrt{(-2)^2 + 0^2} = 2 \), and the acceleration vector is \(\mathbf{r}''(\pi/2) = (0, -3) \).

 (c) In parametric form the trajectory can be written as \(x = 1 + 2\cos t \) and \(y = 3\sin t \), so that \(\cos t = (x - 1)/2 \) and \(\sin t = y/3 \). As \(\cos^2 t + \sin^2 t = 1 \), the non-parametric equation for the trajectory is \((\frac{x-1}{2})^2 + (\frac{y}{3})^2 = 1 \), which is an ellipse.

 (d) At \(t = \pi/2 \), the particle is at \(\mathbf{r}(\pi/2) = (1, 3) \) and the tangent vector at the point is \(\mathbf{r}'(\pi/2) = (-2, 0) \). Hence, the vector equation of the tangent line is \(\mathbf{r} = \mathbf{r}(\pi/2) + \mathbf{r}'(\pi/2) s = (1, 3) + (-2, 0) s \). The parametric equation is \(x = 1 - 2s, y = 3 \) where \(-\infty < s < \infty \).

 (e) The slope is \(\frac{y'(t)}{x'(t)} \big|_{t=\pi/2} = \frac{3\cos t}{-2\sin t} \big|_{t=\pi/2} = 0 \).

3. **(Newton’s Law of Motion)** The engine of an aircraft of mass \(3.6 \times 10^5 \) kg provides a \(7.2 \times 10^5 \) N force. How long is a runway needed for the aircraft to reach its 100 m/s takeoff speed?

 Solution. From \(\mathbf{F} = \mathbf{ma} \) we have \(a = f/m = 2 \) (m/s²). Solving \(v' = a = 2 \) we obtain \(v = 2t + c \). Assuming \(v(0) = 0 \) we have \(c = 0 \) so \(v = 2t \). Solving \(s' = v = 2t \) we have \(s = t^2 + c \). Suppose \(s(0) = 0 \). We have \(s(t) = t^2 \) is the time \(T \) that the aircraft reaches its takeoff speed 100 m/s satisfies \(2T = 100 \) or \(T = 50 \) (s). The distance travelled on the runway is \(s(T) = 50^2 = 2500 \) m. Thus, the runway needs at least 2500 m long.

4. **(Sketching Curves)** Consider the curve \(y = f(x) \) where \(f(x) = x^{-1}e^x, x \neq 0 \). (a) Find intervals where \(f \) is increasing or decreasing. (b) Find intervals where \(f \) is concave or convex. (c) Find any horizontal or vertical asymptotes. (d) Sketch the curve and mark all the points of local extremum and inflection.

 Solution. Computation gives \(f'(x) = x^{-1}e^x - x^{-2}e^x \) and \(f''(x) = x^{-1}e^x - x^{-2}e^x - x^{-2}e^x - 2x^{-3}e^x \).

 (a) Solving \(f'(x) = 0 \) gives \(x = 1 \). Thus (i) in \((-\infty, 0) \) and in \((1, \infty) \), \(f' > 0 \) and \(f \) decreases; (ii) in \((0, 1) \), \(f' < 0 \) and \(f \) increases. (b) The equation \(f''(x) = 0 \) has no solution. Thus \(f'' > 0 \) and \(f \) is convex in \((0, \infty) \); \(f'' < 0 \) and \(f \) is concave in \((-\infty, 0) \). (c) \(\lim_{x \to 0^+} f(x) = \infty, \lim_{x \to 0^-} f(x) = -\infty \), \(\lim_{x \to \infty} f(x) = \infty, \lim_{x \to -\infty} f(x) = 0 \). Thus, \(x = 0 \) is a vertical asymptote, and \(y = 0 \) is a horizontal asymptote (as \(x \to -\infty \)). (d) There is no inflection points, and there is only one local minimum, obtained at \(x = 1 \) with value \(f(1) = e \). The graph is omitted here.
5. (Linear Approximation and Newton’s Method) (a) By a tangent line approximation find $\sqrt{26}$.
(b) Via the Newton’s iteration find the positive root to $x^2 = 26$ (accurate upto 10^{-3}).

Solution. (a) Set $f(x) = \sqrt{x}$. Then $f'(x) = \frac{1}{2\sqrt{x}}$. Since $\sqrt{26} = 5$ we take $a = 25$. The tangent line approximation is $f(x) \sim f(a) + f'(a)(x-a) = f(25) + f'(25)(x - 25) = 5 + \frac{1}{10}(x - 25)$. Thus $\sqrt{26} = f(26) \sim 5 + \frac{1}{10} = 5.1$

(b) We solve $f(x) = 0$ where $f(x) = x^2 - 26$. The Newton’s iteration is $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - 26}{2x_n}$. Set $x_0 = 5$. We have $x_1 = 5 - \frac{25 - 26}{10} = 5.1; x_2 = 5.1 - \frac{5.1^2 - 26}{10.2} = 5.1 - 0.0010$. Thus, the root ≈ 5.099.
Remark: $5.099^2 > 26; \quad 5.098^2 < 26$. Thus $5.099 > \sqrt{26} > 5.098$.

6. (Optimization) (a) Find a point on the parabola $y = x^2 - 1/2$ that is closest to the point $(2, 0)$.

Solution. Suppose the point is (x, y). Then $y = x^2 - 1/2$ and the distance from the point to $(2, 0)$ is $f(x) = \sqrt{(x - 2)^2 + (x^2 - 1/2 - 0)^2} = \sqrt{x^4 - 4x + 17/4}$. As $f'(x) = (4x^3 - 4)/(2\sqrt{x^4 - 4x + 17/4})$, solving $f'(x) = 0$ gives $x = 1$. Thus the point is $(1, 1/2)$ and the shortest distance from all points on the parabola to $(2, 0)$ is $\sqrt{5}/4$.

(b) A box with a square base, rectangular sides, and open top is to contain 6 ft^3 of space. If the cost of the material is $3/ft^2$ for its base and $2/ ft^2$ for its sides, determine its dimensions so that the cost of the material is a minimum.

Solution. Suppose the height is h and the width is x. Then the volume of the box is $x^2h = 6$ so that $h = 6/x^2$. The total cost is $C(x) = 3[x^2] + 2*[4xh] = 3x^2 + 48/x$. As $C'(x) = 6x - 48/x^2$, solving $C'(x) = 0$ gives $x = 2$ (ft) and $h = 6/x^2 = 3/2$ (ft). Thus, the box has dimension $2 \times 2 \times 1.5$ measured in ft.

7. (Related Rates) (a) The volume of a spherical balloon is expanding at 36 m^3/h. How fast is the radius of the balloon increasing when the radius of the balloon is 3 m^3.

Solution. The volume V and radius R obey $V = \frac{4}{3}\pi R^3$, so $\frac{dV}{dt} = 4\pi R^2$ or $\frac{dR}{dt} = \frac{1}{4\pi R^2}$. The volume V and time t obey $\frac{dV}{dt} = 36$ (m^3/h). Hence, $\frac{dR}{dt} = \frac{dR}{dV} \frac{dV}{dt} = \frac{9}{\pi R^2}$. When $R = 3$, $\frac{dR}{dt} = 1/\pi$ (m/h).

(b) The width and length of a rectangular box increase at speeds 4 m/s and -3 m/s respectively. Find the rate of increasing of the area of the box when the width and length of the box are 3 (m) and 2m respectively.

Solution. The width x, the length y, the area A, and time t obey $A = xy$, $\frac{dx}{dt} = 4$, and $\frac{dy}{dt} = -3$. Hence, $\frac{dA}{dt} = \frac{dx}{dt}y + xy\frac{dy}{dt} = 4y - 3x$. When $x = 3$ and $y = 2$, we have $\frac{dA}{dt} = 4*2 - 3*3 = -1$ m^2 /s; i.e., the area decreases at 1 m^2/s.

8. (L’Hôpital’s Rule) Find the limits: (a) $\lim_{x\to 0} \frac{e^x - 1}{x}$ (b) $\lim_{x\to 0} \frac{(1 + x)^{1/x}}{x}$ (c) $\lim_{x\to \infty} x \ln(1 + 1/x)$.

(a) The limit is of $\frac{0}{0}$ indeterminate form, so $\lim_{x\to 0} \frac{e^x - 1}{x} = \lim_{x\to 0} \frac{e^x - 1}{x} = \lim_{x\to 0} \frac{e^x}{1} = e^0 = 1$.

(b) Set $y = (1 + x)^{1/x}$. $\lim_{x\to 0} \ln y = \lim_{x\to 0} \frac{\ln(1 + x)}{x}$ $= \lim_{x\to 0} \frac{1/(1 + x)}{x} = 1$. Thus $\lim_{x\to 0} (1 + x)^{1/x} = e$.

(c) Writing $x \ln(1 + 1/x) = \frac{\ln(1 + 1/x)}{1/x}$ the limit can be regarded as a $\frac{0}{0}$ indeterminate form. Hence $\lim_{x\to \infty} x \ln(1 + 1/x) = \lim_{x\to \infty} \frac{\ln(1 + 1/x)}{1/x} = \lim_{x\to \infty} (\ln(1 + 1/x))' = \lim_{x\to \infty} \frac{1}{1(x)'(1/x)' = 1}$.

2