Problem 1: Let V be the set of all (ordered) pairs of real numbers. Let $x = (a_1, a_2)$ and $y = (b_1, b_2)$ be elements of V and the addition and multiplication be defined such that

\[
x + y = (a_1 + b_1, a_2 + b_2)
\]

\[
kx = (ka_1, 0)
\]

\[
0 = (0, 0)
\]

\[
-x = (-a_1, -a_2)
\]

Is V with the defined operations a linear space? Why?

Problem 2: Consider the vector space P of all polynomials over \mathbb{R} and the subset V of P consisting of those polynomials for which

(a) $x(t) \geq 0$ whenever $0 \leq t \leq 1$

(b) $x(t) = x(1-t)$ for all t

In which of these cases is V a linear space? Justify.

Problem 3: Let Y and Z be two subspaces of a linear space X. Show that $Y + Z$ and $Z \cap Y$ are subspaces of X.

Problem 4: Under what conditions on the scalar k are the vectors $(k,1,0)$, $(1,k,1)$, $(0,1,k)$ in \mathbb{R}^3 linearly dependent? What is the answer for \mathbb{Q}^3 (in place of \mathbb{R}^3)?

Problem 5: Let X, Y and Z be subspaces of a linear space. Show that the subspaces $(X \cap Y) + (X \cap Z)$ and $X \cap (Y + Z)$ are not necessarily identical.

Problem 6: Show that if x_1, x_2, \ldots, x_n are linearly independent then $x_i \neq 0$ for $i = 1, 2, \ldots, n$.

Problem 7: Let Y and Z be two subspaces of a linear space X. Show that

\[
\dim Y + \dim Z = \dim(Y + Z) + \dim(Y \cap Z)
\]