Biochemical Processes

<table>
<thead>
<tr>
<th>Metabolic processes</th>
<th>Purpose</th>
<th>Reactions</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Conversion of food into energy
• Production of building blocks</td>
<td>Enzymatic conversion of metabolites</td>
<td>• Glycolysis
• Synthesis of Lys, Met, Iso, Thr</td>
<td></td>
</tr>
<tr>
<td>Genetic processes</td>
<td>• Production of enzymes
• Regulation of metabolic processes in response to cell needs
• Replication of DNA</td>
<td>Transcription Translation</td>
<td>• Lysis-lysogeny switch
• Cell cycle</td>
</tr>
<tr>
<td>Signaling processes</td>
<td>• Regulation of genetic and metabolic processes in response to extracellular signals
• Cell differentiation</td>
<td>Phosphorylation</td>
<td>• MAPK
• A-kinase</td>
</tr>
<tr>
<td>Mechanobiological</td>
<td>• Transport of molecules
• Chemotaxis</td>
<td>Power stroke</td>
<td>• Kinesin motor
• Flagella</td>
</tr>
</tbody>
</table>

Genetic and Signaling Networks
- Control metabolic processes

Multilevel system
Level 1 regulators control the activity/concentration of enzymes
Level 2 regulators control the activity/concentration of level 1 regulators, … etc.
DNA transcription

RNA polymerase (RNAP) and gene

A, C, U, G

mRNA

Ribosome

Nuclease

Protease

Shea & Ackers mechanism

- R = RNA polymerase, P = DNA promoter, A = protein

 \[R + P \rightleftharpoons RP_c \rightarrow RP_o \rightarrow R + P + A \]

- \(RP_c \), the closed complex, is in equilibrium with R and P with equilibrium constant \(K \)

- The rate of production of a protein, \(v \), is proportional to \(K \)

- \(K \) is a function of concentrations of regulatory proteins \(B, C, \ldots \):

 \[
 \frac{dA}{dt} = K(B, C, \ldots)v - \gamma A
 \]

 where \(\gamma \) is the natural degradation rate of the protein A

Basic regulatory mechanisms

Activation: increases \(K \), and hence \(v \)

\[
\frac{\partial K}{\partial B} > 0
\]

Repression: decreases \(K \), and hence \(v \)

\[
\frac{\partial K}{\partial B} < 0
\]
Additional regulatory mechanisms

- control of DNA accessibility – chromatin remodeling
- control of mRNA accessibility and lifetime – miRNA, siRNA, degradation
- control of protein lifetime – ubiquitination

Examples of regulatory networks

Switches

- systems with multiple equilibrium states
- logical control, computation, signal integration, memory

Controls

- systems with nonlinear input-output relation
- continuous adjustment: feedback and feed-forward loops

Oscillators

- systems with limit cycles
- periodic transitions between states: synchronization, carry signal

Amplitude filters

- amplify signals of intermediate strength: autoregulation

Noise filters or amplifiers

- regulation using noisy components

Fundamental question – Can every network be decomposed into elements?
Mathematical description

Many alternative models available.

Variables: DNA, mRNA, protein, cofactor abundances
 – continuous/discrete,
 – spatially homogeneous/inhomogeneous

Influences:
 – relational/dynamical

Dynamics:
 – continuous in time/discrete in time
 – deterministic/stochastic/delayed

Cons

- Multitude of levels of description available – difficult to gauge the correct amount of detail needed
- Lack of information about the parameters of the system
- Lack of experimental data for quantitative comparison of models and data
- Qualitative evaluation of models is subjective

Pros

- Amount of data is growing exponentially
- Time resolved in situ measurements possible
- Opportunity to do interesting and applicable mathematics